恒小花:AI人工智能如何定义

来源:市场情报网
发布时间:2024-01-24 16:16   阅读量:7670   会员投稿

  人工智能一词“正式”起源于美国数学家约翰麦卡锡(1956 年),并与他一起“推出”了第一批专门针对 AI 的编程语言(1958 年的 Lisp 和 1973 年的 Prolog)。从那时起,人工智能的历史一直在波动,其特点是在数学模型方面取得了重大进展(越来越复杂,旨在“模仿”一些大脑功能,如模式识别),但在研究方面却有起有落。硬件和神经网络。后一条战线的第一次重大进步发生在 1990 年代,随着图形处理器进入“扩展”市场(即普通大众),

  最近的一波浪潮是在过去十年中随着所谓的“神经形态芯片”的发展而到来的,即在单个微组件中集成数据处理和存储的微芯片,这要归功于研究领域的加速。纳米技术,以模拟人脑的感觉和认知功能,这是许多初创公司也在关注的领域。

  稍微回顾一下历史,第一个神经网络模型要追溯到 1950 年代末:它就是所谓的“感知器”,由美国著名心理学家和计算机科学家弗兰克·罗森布拉特在 1958 年提出,一个网络具有输入层和输出层以及基于“误差反向传播”算法(误差最小化)的中间学习规则;本质上,数学函数基于对给定输入的有效输出数据的评估,它改变了连接(突触)的权重,导致有效输出与所需输出之间存在差异。一些行业专家将控制论和人工智能的诞生追溯到 Rosenblatt 感知器,尽管在紧随其后的几年里,数学家 Marvin Minsky 和 Seymour Papert 证明了 Rosenblatt 神经网络模型的局限性:经过充分的“训练”,感知器只能识别线性可分的函数。也就是说,通过输入向量空间中的训练集(学习算法),它设法将需要正输出的那些与需要负输出的那些分开。此外,单个感知器的计算能力是有限的,产量在很大程度上取决于输入的选择和“修改”突触从而“修改”输出的算法的选择。

  从技术角度来看,第一个重要的转折点发生在 70 年代末和 80 年代之间,随着 GPU 的发展,大大减少了网络训练时间,减少了 10/20 倍。

  在纯粹的计算意义上,人工智能可以被归类为包含理论和实用技术的学科,用于开发允许机器(尤其是“计算机”)至少在领域和领域中显示智能活动的算法。 .

  从对定义的第一次尝试来看,很明显有必要对人类的推理、元推理和学习的综合/抽象功能进行正式分类,以便在它们的基础上建立能够指定此类形式的计算模型。推理和学习是一项艰巨的任务,因为即使在今天,人类大脑的真正功能还没有被完全理解。

  另外,当我们谈到推理能力和从观察中自动学习的时候,我们经常会碰到认知计算,它应该被理解为基于人工智能(包括机器学习和深度学习)和信号科学学科的一组技术平台。处理(处理信号的能力)。

郑重声明:此文内容为本网站转载企业宣传资讯,目的在于传播更多信息,与本站立场无关。仅供读者参考,并请自行核实相关内容。

ad555
版权声明 - 广告服务 - 加入我们 - 不良信息举报-
市场情报网 版权所有
备案号:京ICP备16039483号